
International Journal on Digital Libraries manuscript No.
(will be inserted by the editor)

A Sharing-Oriented Design Strategy for Networked Knowledge
Organization Systems

Ryan Shaw · Adam Rabinowitz · Patrick Golden · Eric Kansa

Received: date / Accepted: date

Abstract Designers of networked knowledge organization
systems often follow a service-oriented design strategy, as-
suming an organizational model where one party outsources
clearly delineated business processes to another party. But
the logic of outsourcing is a poor fit for some knowledge
organization practices. When knowledge organization is un-
derstood as a process of exchange among peers, a sharing-
oriented design strategy makes more sense. As an example
of a sharing-oriented strategy for designing NKOS, we de-
scribe the design of the PeriodO period gazetteer. We ana-
lyze the PeriodO data model, its representation using JSON-
LD, and the management of changes to the PeriodO dataset.
We conclude by discussing why a sharing-oriented design
strategy is appropriate for organizing scholarly knowledge.

Keywords NKOS · periodization · service-oriented
architecture · Semantic Web · JSON-LD

This work was generously funded by a Digital Humanities Start-Up
Grant from the National Endowment for the Humanities (grant number
HD-51864-14).

R. Shaw
School of Information and Library Science
The University of North Carolina at Chapel Hill
E-mail: ryanshaw@unc.edu

A. Rabinowitz
Department of Classics
The University of Texas at Austin
E-mail: arabinow@utexas.edu

P. Golden
School of Information and Library Science
The University of North Carolina at Chapel Hill
E-mail: ptgolden@unc.edu

E. Kansa
Open Context
University of California, Berkeley
E-mail: ekansa@berkeley.edu

1 Introduction

Networked knowledge organization systems (NKOS) make
information about concepts, terms, and their relationships
accessible over a network. If a NKOS allows programmatic
access, tools for authoring, publishing, curating, or finding
resources can use its concepts and terms to improve descrip-
tion and querying. NKOS have typically been designed and
implemented as Web services. A Web service runs on a re-
mote Web server and responds to requests made by client
software running on the user’s computer. The tendency to
view NKOS as Web services evinces the dominance of a
design strategy known as service-orientation. A system de-
signed according to this strategy is said to have a service-
oriented architecture (SOA).

From a technical perspective, SOA refers to a subset of
variations upon the typical client-server architectural style
for designing Web applications. These include services that
expose procedures to be called remotely, services for remote
data access via a standard query language, and services that
expose representations of resources to be manipulated via
HTTP. However, SOA is best understood not as a set of a
technical choices, but as the outcome of a broader design
strategy. Understood as a strategy, service-orientation is the
application of the logic of business outsourcing to software
design. By embracing SOA, NKOS architects have (inten-
tionally or not) adopted a view of knowledge organization
as a process that can be outsourced to specialist providers.

But the logic of outsourcing is a poor fit for some knowl-
edge organization practices. When knowledge organization
is understood as something that can be detached from other
“core” activities, a service-oriented strategy for designing
NKOS may be appropriate. But when knowledge organiza-
tion is understood as a process of exchange among peers, a
sharing-oriented strategy is a better fit. As an example of im-
plementing a sharing-oriented design strategy for NKOS, we



2 Ryan Shaw et al.

describe the design of the PeriodO period gazetteer. We ana-
lyze the PeriodO data model, its representation using JSON-
LD, and the management of changes to the PeriodO dataset.
We conclude by explaining how PeriodO’s sharing-oriented
architecture benefits the data curators and scholars for whom
it was designed.

2 Networked knowledge organization systems

A knowledge organization system (KOS) is a tool that can
inform its users about concepts of interest in some domain,
various names or terms associated with those concepts, and
relationships among concepts [19]. Examples include dic-
tionaries, gazetteers, taxonomies, and thesauri. A networked
knowledge organization system (NKOS) is a KOS acces-
sible over a network, which can be used to facilitate the
description, discovery, or retrieval of other networked re-
sources [18, 36]. The term NKOS originated with a series
of workshops, beginning in 1997, focused on developing a
functional and data model for networked knowledge organi-
zation systems [38]. Work carried out under the NKOS label
overlaps with other research programs with similar goals,
such as the ISO Topic Maps standards [16] and the broader
effort to create a Semantic Web. The basic ideas can be
traced back to earlier work on integrating knowledge struc-
tures into hypermedia systems [for example 7, 4]. In this
paper we use the term NKOS to refer broadly to any effort to
make information about concepts, terms, and their relation-
ships accessible over a network.

During the past two decades researchers and practition-
ers have worked through many of the issues involved in con-
structing NKOS. As a result NKOS have moved from theory
to practice. The OCLC library cooperative provides to its
members networked access to several vocabularies for de-
scribing the form and content of library materials. The Getty
Research Institute provides networked access to their vo-
cabularies for describing works of art and architecture. Net-
worked gazetteers such as GeoNames have become critical
pieces of infrastructure for translating between place names
and geographical coordinates. The successful deployment of
these systems reflects a great deal of work on data modeling,
semantics, representation, and standards, much of which is
documented in the NKOS literature. Yet there has been com-
paratively little attention paid to the pragmatics of building
applications that rely on NKOS data. Why? One reason is
a set of assumptions about how NKOS would be integrated
into software systems. These assumptions took hold early
on and continue to govern the design of NKOS today.

The S in NKOS is indicative of the assumptions made
regarding the integration of NKOS into software systems.
The S in KOS stands for system or structure. System and
structure name closely related concepts: a system is a set of
parts constituting a complex whole, while the arrangement

of and relations between these parts constitute the system’s
structure. A KOS is a system because it consists of parts
(concepts and terms) connected together in a consistent and
coherent way to form a complex whole. This systematic ar-
rangement of parts defines a certain structure, hence the S in
KOS can just as easily stand for structure. The literature on
NKOS introduces a third meaning for the S: service. Service
is not conceptually related to system or structure. The intro-
duction of the term service thus reflects assumptions about
how knowledge systems and their structures should be made
available to other applications on the network.

Since the late 1990s researchers have experimented with
ways of providing programmatic access to KOS over a net-
work. Binding and Tudhope [3] provide a good overview
of this early work, drawing a distinction between systems
with an HTML interface via which human users could use
a KOS, and Web services allowing programmatic use of a
KOS. They note that the conceptualization of NKOS as Web
services took hold early on. One of the sessions of the sec-
ond NKOS workshop, held in 1998, was devoted to sketch-
ing out a “functional model of the process of using a Knowl-
edge Organization System (KOS) over a network” [8]. The
purpose of this model was to specify, not how KOS con-
tent should be displayed or interacted with, but “the inter-
action over the network between the software on the users’
computer (the client) and the software on the computer that
manages the reference tool [KOS]” [8]. It was noted during
the session, however, that “it is not always easy to draw the
line between whether a feature belongs properly to the user
interface or the client-server interaction” [8]. Despite this
difficulty, the client-server model sketched out here would
come to dominate NKOS designs as researchers and IT ar-
chitects embraced the gospel of SOA.

3 Service-oriented architecture

The term service-oriented architecture appears to have been
introduced in two technical reports published by the Gart-
ner Group in 1996 [30, 29]. According to Draheim [10], in
these reports SOA was characterized primarily as the separa-
tion of data-processing logic from data sources. And indeed
this is roughly the promise of SOA for NKOS presented by
Binding and Tudhope [3]: “a clearer separation of interface
components from the underlying data sources, via the use
of appropriate Web services.” But like so many IT terms,
the term SOA has a great deal of interpretive flexibility, and
definitions have mutated and proliferated over time [10]. In
its weakest sense, SOA is used to describe any modular soft-
ware system where the components communicate over a net-
work. A strong definition of SOA, on the other hand, might
further specify what it means to conceptualize a component
as a service. For example, The Open Group [35] defines a



A Sharing-Oriented Design Strategy for Networked Knowledge Organization Systems 3

service as “a logical representation of a repeatable business
activity that has a specified outcome.”

Most systems cited as examples of SOA exhibit some
derivation of the client-server architectural style. The client-
server architectural style divides software components into
clients that act by sending requests and servers that respond
to those requests [13, 45–46]. This division creates a hierar-
chy among components, in which a single server will typi-
cally respond to requests from multiple clients. Clients and
servers can be arranged in multiple layers to achieve “loose
coupling” among components, improving their reusability
and extensibility[13, 46–47]. In the Gartner reports, SOA
was used broadly to name this type of layered client-server
architectural style. But SOA can also imply specific mech-
anisms via which clients and servers communicate. Early
SOA implementations tended to use remote procedure call
(RPC) mechanisms. These connection mechanisms rely on
the specification of a high-level, domain-specific protocol
that identifies the procedures that can be called, the parame-
ters they take, and the data they return. For example, the the-
saurus service protocols examined by Binding and Tudhope
[3] identify specific procedures for querying thesaurus struc-
ture such as get-broader and get-narrower (terms).

In recent years, SOA has come to be more closely iden-
tified with representational state transfer (REST), an ar-
chitectural style described and named by by Fielding [13].
RPC-style systems have fallen out of favor as software archi-
tects have come to appreciate the benefits of understanding
the Web as a system designed in the REST style. REST is
a derivation of the client-server style. Where RPC protocols
identify procedures, a system in the REST style identifies re-
sources, which are abstract conceptualizations of the entities
of interest in some domain [13, 88]. The system provides a
generic, uniform interface for interacting with and manip-
ulating resources through representations. A representation
is a document that encodes information about the current
or desired state of a resource. A “RESTful” NKOS on the
Web, then, is one that a) uses URIs to identify terms and
concepts, b) represents the state of terms and concepts using
a standardized document structure, and c) enables access to
and manipulation of terms and concepts via standard HTTP
methods (GET, PUT, PATCH, POST, and DELETE) .

The SOA paradigm has also come to encompass linked
data services. Like systems with a REST-style Web archi-
tecture, linked data services use URIs to identify entities,
and the states of those entities are represented using a stan-
dard document structure (typically a serialization of RDF).
But many linked data deployments forego the uniform inter-
face of HTTP in favor of a remote data access (RDA) style
[26]. RDA-style systems define a standard query language
that governs the semantics of client-server communications
[13, 49–50]. Instead of multiple access points identified as
callable procedures (as in the RPC style), or multiple access

points identified as resources (as in the REST style), there is
a single access point to which queries are submitted. An ex-
ample of an RDA-style NKOS is Getty Vocabularies, which
provides a SPARQL endpoint to query across the vocabu-
laries for describing art and architecture maintained by the
Getty Research Institute. SPARQL endpoints exemplify the
RDA style: clients issue SPARQL queries to a remote server,
which processes the query to filter, transform, or construct a
data set to be returned to the client.

4 Service-oriented design strategy

If RPC-style, REST-style, and RDA-style architectures can
all be called SOA, what does the term really mean? SOA
is best understood not as a specific software architecture,
but as the result of following a service-oriented design strat-
egy. Service-oriented design strategy consists of a) a set of
ideas about what are the desirable properties of software sys-
tems, and b) a way of thinking about how software systems
should provide their functionality . The desirable properties
promised by SOA—interoperability, integration, reliability,
security, scalability, extensibility, and manageability [2]—
clearly reflect the priorities of the “enterprise” software cul-
ture primarily responsible for evangelizing it. But the way
of thinking about how software systems should provide their
functionality also reflects common enterprise practice, spe-
cifically the practice of outsourcing. Outsourcing involves
identifying functions or processes that can be carried out by
a specialist provider. If the provider carries out these pro-
cesses for many different clients, it can achieve economies
of scale beyond what any one client could achieve on its
own. Furthermore, if the definition of the functions to be
provided can be adequately standardized, then their provi-
sion can be commodified: clients can easily switch between
providers and seek the highest level of service for the lowest
cost. Service-oriented design strategy, then, is the logic of
outsourcing applied to software: greater efficiency and cost-
effectiveness through specialization and standardization.

Evangelists of service-orientation for scholarly and sci-
entific computing explicitly employ the logic of outsourc-
ing: “The last two capabilities—functions and resources—
can, in principle, be handed off to specialist providers. If
such specialists can deliver resources or operate required
functions for many communities, then (again, in principle)
economies of scale can be achieved, while scientists can fo-
cus on what they are good at—providing content and ad-
vancing science” [14, 815]. It is this logic, rather than a
specific technology, that NKOS architects have adopted by
embracing SOA. Binding and Tudhope [3] make the case
succinctly when they suggest that “a provider might offer a
KOS service on their portal while independently a DL [dig-
ital library] might offer various collections to be searched,



4 Ryan Shaw et al.

offering a choice of vocabulary search tools [from differ-
ent KOS service providers] or allowing the user to choose
if a standard protocol existed.” These are the fundamental
ideas that have guided NKOS development over the past
two decades: that knowledge organization is a service that
can be offered by a specialist provider, that efficiencies and
economies of scale can be achieved by centralizing the pro-
vision of knowledge organization, and that knowledge or-
ganization can be commodified through standardized proto-
cols, representations, or query languages. Thus despite dif-
ferences over time in the specifics of the preferred style of
implementation (RPC, REST, or RDA), service-orientation
as a strategy for organizing the interactions of KOS users
and providers has remained stable.

A service-oriented strategy makes sense when designing
NKOS intended to establish consensus around a system of
concepts and terminology, with the goal of increased effi-
ciency. For example, large enterprises that buy from and sell
to one another may standardize the definitions and names
of the categories of products bought and sold. In such cases
it is sensible to conceive of the provision and maintenance
of the standard taxonomy as a business process that can be
outsourced to specialist providers. The specialist providers,
supported perhaps by fees from enterprises wishing to par-
ticipate in the standardization process, can take advantage
of economies of scale to manage the shared taxonomy more
cheaply than the enterprises could do individually. The en-
terprises can then focus on providing business value and
making profits, rather than taxonomy management.

5 Sharing-oriented design strategy and architecture

But not all KOS are intended to standardize concepts and
terminology. Some KOS may be intended to map a diverse
conceptual and terminological landscape rather than pro-
vide canonical names and definitions. In section 6 we de-
scribe one such KOS, which records definitions of histori-
cal periods authored by archaeologists and other scholars.
These scholars’ definitions reflect their individual data and
interpretations; they are not necessarily seeking to estab-
lish consensus. Accordingly the logic of outsourcing does
not apply: these scholars should not “hand over” manage-
ment of their definitions; they themselves are the specialists
best positioned to manage them. The judgments they ex-
press through definition are their own and cannot be made
for them by an external “service provider.” However, these
scholars do have an interest in disseminating information
about changes to their definitions and keeping up-to-date
with the definitions used by others. What they need is a
NKOS that promotes dissemination of concepts and termi-
nology, without assuming that such dissemination requires
entering into an ongoing outsourcing relationship with ex-

ternal service providers. An alternative design strategy is
needed: a sharing-oriented design strategy.

A sharing-oriented design strategy does not differ sig-
nificantly from a service-oriented strategy in terms of objec-
tives: interoperability, integration, reliability, security, scal-
ability, extensibility, and manageability are still desirable.
The significant change is in the way of thinking about how
these objectives should be reached. A sharing-oriented de-
sign strategy for scholarly NKOS does not attempt to isolate
the management of terms and concepts as a specialized ac-
tivity, but instead treats it as intimately interconnected with
the broader process of scholarship. Scalability is achieved
not by enabling a single “service provider” to work for many
clients, but by streamlining the means of communication
among peers. Consensus on a standardized “single source of
truth” is explicitly rejected as a goal, in favor of better tools
for managing diverse perspectives on reality. Likewise some
efficiency is sacrificed for greater flexibility and autonomy.

A sharing-oriented design strategy does not necessarily
dictate a single specific architecture for NKOS. But one ar-
chitecture that has proven to be compatible with a sharing-
oriented strategy is that of distributed version control sys-
tems. Distributed version control allows people to collabo-
rate in a purely peer-to-peer, distributed fashion through the
exchange of patches: documents describing local changes to
data. Distributed collaboration via the sharing of patches has
proved quite successful among software developers, most
recently in the form of the free distributed version control
system Git [6] and the commercial repository hosting ser-
vice GitHub. Taking distributed version control as a model
leads to a sharing-oriented architecture for NKOS that en-
ables the following workflow:

1. Obtain a copy of a KOS serialized in a standard format,
or author a new KOS from scratch.

2. Work with one’s KOS, making changes as needed to suit
one’s purposes.

3. When one wishes to give changes or updates to one’s
KOS to someone else:
(a) Obtain a copy of that person’s KOS.
(b) Generate a patch describing the differences between

one’s own KOS and that person’s KOS.
(c) Send the patch to that person, along with whatever

explanation or argumentation ones wishes to add.
That person can then choose to apply or reject the
patch. If they accept it, there may be conflicts that
will need to be resolved before the accepted patch
can be applied.

Note that nothing about this workflow requires the no-
tion of a canonical or authoritative version of a KOS. How-
ever it is often useful to be able to reference a canonical
version of a KOS, preferably one that makes some guar-
antees about the quality of its data over time. In the sec-



A Sharing-Oriented Design Strategy for Networked Knowledge Organization Systems 5

tion 6 we describe in detail the sharing-oriented architecture
of the PeriodO period gazetteer, including the use of per-
sistent identifiers for referencing a canonical version of the
PeriodO dataset.

6 The PeriodO period gazetteer

The PeriodO period gazetteer1 documents definitions of his-
torical period names. Each entry of the gazetteer identifies
the definition of a single period. To be included in the gaz-
etteer, a definition must a) give the period a name, b) im-
pose some temporal bounds on the period, c) have some
implicit or explicit association with a geographical region,
and d) have been formally or informally published in some
citable source. Period definitions from the same citable text
or dataset are grouped into collections. Much care has been
put into giving period definitions stable identifiers, associat-
ing our documentation of the definition and its source with
a string usable in citations. Anyone can propose additions
of new definitions to PeriodO, and anyone can use PeriodO
identifiers to refer to a specific definition of a period in Peri-
odO.

Currently PeriodO is focused on periods defined by ar-
chaeologists. PeriodO has documentation of 1,800 period
definitions at the time of writing, all of which appeared in
sources published or cited by archaeologists. The 1,800 def-
initions were gathered from around 70 sources. About 1,000
of the definitions come from projects curating and publish-
ing archaeological data on the Web, such as the Fasti On-
line database of archaeological excavations2 and the Lev-
antine Ceramics Project3. These curation projects provide
interfaces for browsing and comparing data from different
sources. Comparison along the temporal dimension is criti-
cal for such interfaces, and so there is a need to relate the pe-
riod names used to label data to temporal ranges. As a result
these projects have created definitions of the period names
they use, definitions that include descriptions of the tempo-
ral ranges encompassed by the periods named. The source
contributing the greatest number of such definitions (around
500) is the Digital Index of North American Archaeology
(DINAA), an effort to build a union index of databases of
archaeological sites in North America.

Most of the remaining definitions were gathered from
archaeological monographs, articles, and textbooks by the
GeoDia project [27]. GeoDia was an attempt to address the
gap between the heterogeneous and spatially-situated schol-
arly usage of period terms and their homogeneous and stan-
dardized appearance in textbooks and reference materials.

1 The canonical dataset is http://n2t.net/ark:/99152/p0.
Public domain source code is at https://github.com/periodo.

2 http://www.fastionline.org/
3 http://www.levantineceramics.org/

Art-history textbooks, for example, usually present a sin-
gle temporal definition for the term Archaic with reference
to ancient Greek culture [e.g. 34]; but a review of the art-
historical and archaeological literature reveals that the same
term is used by different authoritative sources to refer to
different date-ranges in different geographic locations (and
sometimes even in the same locations). Rather than creat-
ing a standardized periodization, then, the GeoDia project
set out to document and visualize the usage of period terms
on a site-by-site basis. The project collected a broad range of
definitions of period terms from authoritative archaeological
texts that discussed particular sites or regions, with a focus
on the ancient Mediterranean. The GeoDia project and its
influence on the design of PeriodO are discussed in more
detail in section 6.1.

The PeriodO dataset is already a useful resource, as it en-
ables comparison of and mapping between periods defined
by several major archaeological databases, and documents
hundreds more such definitions in archaeological literature.
We hope that the PeriodO data will prove useful as a tool for
the data curators who contributed period definitions. And
we hope that PeriodO will be adopted by scholars and re-
searchers as a way to publicly document their judgments
about historical periods. Thinking about how to provide both
a practical tool for data curators and a convenient system for
public documentation led us to develop the sharing-oriented
design strategy outlined in the section 5.

6.1 Period definitions and collections

Understanding the design of the PeriodO data model re-
quires understanding the process through which the PeriodO
dataset was created. As discussed above, much of the Peri-
odO dataset was initially created by Adam Rabinowitz and
his assistants for the GeoDia spatial timeline of the ancient
Mediterranean. A goal of GeoDia was to help students be-
come “aware of the multiplicity of terms and concepts that
are used to group material remains into chronological peri-
ods or geographic units” [27]. Toward that end, the GeoDia
project collected definitions of period terms from authori-
tative archaeological texts, focusing on the ancient Mediter-
ranean. For example, Lorrio and Zapatero [24]’s article “The
Celts in Iberia: An Overview”, published in 2005 in the on-
line journal e-Keltoi, proposes a certain perspective on the
periodization of the Iberian peninsula in antiquity. As is so
often the case in the writing of history, the expression of this
perspective includes the explicit temporal and geographic
definition of period terms. In this case, Lorrio and Zapatero
use the terms Late Bronze Age II/III, Early Iron Age, and
Late Iron Age. Only the latter two are given clear definitions
in the text of the article:

http://n2t.net/ark:/99152/p0
https://github.com/periodo
http://www.fastionline.org/
http://www.levantineceramics.org/


6 Ryan Shaw et al.

• “Previously, this region [the central Douro Valley] had
been inhabited by the Soto de Medinilla group (ca. 800-
400 BC), which defined the Early Iron Age” (217)

• “Between 800 and 400 BC (the Early Iron Age), the Cas-
tro Culture communities further developed the tenden-
cies of the previous period [the Late Bronze Age] ...”
(222)

• “The Late Iron Age (400-100 BC) witnessed the emer-
gence of more unequal and complex societies, the re-
gional compartmentalization of land and a strong differ-
entiation of material culture ...” (223)

These definitions merited inclusion in GeoDia because they
include descriptions of both temporal coverage (expressed
explicitly via phrases such as “between 800 and 400 BC”)
and spatial coverage (implicitly via the focus of the article
on the Iberian Peninsula).

The GeoDia project thus established the initial model of
grounding period definition in scholarly assertions, a model
that has been refined in PeriodO. A minimal PeriodO period
definition consists of a human-readable label and statements
of temporal and spatial coverage. The preferred label and
statements of temporal and spatial coverage are taken verba-
tim from the text of the source, where possible. These tex-
tual labels are then supplemented with normalized values.
Descriptions of temporal coverage are parsed into standard-
ized forms (ISO 8601 lexical representations of Gregorian
calendar years). Descriptions of spatial coverage are supple-
mented by one or more references to spatial things (things
having spatial extent), typically modern nation-states, but
occasionally more specific spatial entities. For example, the
spatial coverage of Lorrio and Zapatero’s definition of the
Early Iron Age is described textually by the label Galicia,
and this label is supplemented by the URL of the DBpe-
dia resource http://dbpedia.org/resource/Galicia_
(Spain). Where periods are originally defined in languages
other than English, English-language labels are assigned as
alternate labels.

Definitions from the same source are grouped into col-
lections. Thus Lorrio and Zapatero’s definitions are grouped
into a period collection that is associated with bibliographic
metadata describing the source article. Where possible, the
source bibliographic entity for a period collection is iden-
tified with a URL, typically a WorldCat URL for a book
or a CrossRef DOI for a journal article. If no stable URL
providing RDF metadata has been assigned to the source
bibliographic entity, we record in PeriodO the title, names
of creators, year published, and either a formatted citation
or a (non-metadata-providing) URL for the source. A pe-
riod collection is not a periodization, where periodization is
understood as meaning a single coherent, continuous divi-
sion of historical time, each part of which is labeled with
a period term. A set of period term definitions may consti-
tute a periodization, but this is not necessary. For example, a

monograph could propose and compare two alternative pe-
riodizations of the history of some region. Period definitions
extracted from the monograph would share the same source
and would thus be grouped together in a PeriodO collection.
However, this grouping would not reflect the fact that the
periods defined belong to two distinct periodizations. Fur-
ther assertions making the distinction could be added to the
PeriodO dataset at a later point. Our initial goal has been
to identify period definitions having a common source, and
to leave more complex modeling of periodizations to future
work, if it is deemed necessary.

We have formally modeled PeriodO period definitions as
SKOS concepts, and the period collections (into which defi-
nitions are grouped) are modeled as SKOS concept schemes
[25]. The PeriodO dataset itself is an unordered container
(rdf:Bag) of concept schemes. The dcterms:source of
each concept scheme is the bibliographic entity from which
the period concepts were extracted. Each period definition,
in addition to being modeled as a SKOS concept, is also
modeled as an OWL-TIME proper interval, which is an in-
terval of time with distinct beginning and end points [20].
OWL-TIME defines predicates corresponding to the pos-
sible binary relations between temporal intervals identified
by Allen and Ferguson [1]. We use the OWL-TIME predi-
cates intervalStartedBy and intervalFinishedBy to
link period definitions to the proper intervals that represent
their beginnings and ends. Period beginnings and ends are
themselves represented as proper intervals; they are not in-
stants but always have some temporal extent reflecting the
intended degree of precision. Each proper interval represent-
ing a period beginning or end has a label taken from the orig-
inal source (e.g. 800 B.C.), and a DatetimeDescription
providing an interpretation of the interval in terms of in-
dividual properties. Typically this datetime description has
only a single property, time:year, the value of which is an
xsd:gYear value (an ISO 8601 lexical representation of a
Gregorian calendar year). For example, an interval with the
label 800 B.C. would have a time:year property with the
value -0799.

In some cases, time:year is insufficient for describing
the interval. For example, Fouilland et al [15] define the Fase
II period for the necropolis of Monte Casasia in Sicily as
starting at the “beginning of the 6th century B.C.”, so this
phrase is used as the label of the interval beginning this
period. If the start of the period had been defined as “600
B.C.”, then a datetime description with a time:year value
of -0599 may have been sufficient. But “beginning of the
6th century B.C.” seems less precise than “600 B.C.”, and so
to reflect the lack of precision in this descriptive phrase, we
indicate the temporal extent of the interval using two proper-
ties, earliestYear and latestYear, which are assigned
the values -0599 and -0566 respectively. The 33-year ex-
tent indicated by this datetime description, unlike the in-



A Sharing-Oriented Design Strategy for Networked Knowledge Organization Systems 7

terval’s label, should not be ascribed to the creators of the
original source. It is a description assigned by the PeriodO
maintainers to the interval for use when ordering, querying,
or visualizing period definitions by their temporal coverage.

6.2 JSON-LD representation

One of our design goals for PeriodO was that the dataset be
easy to work with programmatically. We want to encourage
others to build tools that consume PeriodO data. We decided
that this required us to publish PeriodO data as JavaScript
Object Notation (JSON). JSON is a subset of the JavaScript
programming language intended for use as a data exchange
format. Data is represented as combinations of JavaScript
objects (sets of key-value pairs) and arrays (ordered lists of
values). Values may themselves be objects or arrays. Every
programming language has libraries for reading and encod-
ing JSON, and such libraries are included in the core distri-
butions of most major languages. And of course JSON is the
format of choice for working with data in browser-based ap-
plications, using libraries such as Backbone or D3.js. How-
ever, many of our partners used RDF-based tool stacks for
working with data, and making the dataset easy to work with
programmatically for them meant publishing PeriodO data
as Linked Data. Fortunately, the recent W3C Recommen-
dation of JSON-LD, a JSON-based serialization for Linked
Data [32], made it possible to design a data format that is
easily programmable using either a JSON-based or a RDF-
based tool stack.

JSON-LD documents are, syntactically, just JSON docu-
ments: any ordinary JSON parser can parse a JSON-LD doc-
ument. However a JSON-LD document, unlike an ordinary
JSON document, follows certain conventions that allow it to
be interpreted as encoding an RDF graph. A JSON-LD node
object (set of key-value pairs) is interpreted as representing
a node in an RDF graph. Each key-value pair in the object
represents a predicate and a value or, if the value is an array,
an unordered set of predicate-value pairs sharing the same
predicate but having different values. If a value is an object,
it is interpreted as another node in the graph, otherwise it is
interpreted as a literal. Finally, JSON-LD documents use re-
served keywords to further guide interpretation of the JSON
data structures as RDF. The @id keyword, when used as the
key in a JSON-LD node object, indicates that the value as-
sociated with it should be interpreted as a URI identifying
the node in the RDF graph. A @context key has as its value
a JSON-LD context object, which shows how terms used as
keys in node objects should be interpreted as predicates with
specific URIs.

Figure 1 shows how a PeriodO period definition is rep-
resented using JSON-LD. The JSON-LD representation of
the PeriodO data consists of a single root JSON-LD node
object. The root node object has a periodCollections

property, the value of which is a large object representing
all the period collections in the PeriodO dataset. The keys of
this object are the identifiers for the period collections, while
the values are node objects, each representing an individual
collection. Each node object representing a period collec-
tion has a source property, the value of which is an object
containing bibliographic metadata describing the source, in-
cluding (if possible) an external URI for the source (e.g. a
WorldCat or CrossRef Linked Data URI). The value of the
definitions property is another index object, this time
with individual period definition identifiers as keys and the
node objects representing those definitions as values.

Structuring the dataset as an object like this makes it effi-
cient to use as an index for looking up period collections by
their identifiers. However we do not want these index keys to
be interpreted by a JSON-LD processor as predicate URIs,
so we use the JSON-LD @container and @index keywords
to indicate that the value of the periodCollections term
is an index. The keys of the index are thus ignored by JSON-
LD processors, and the values are interpreted as objects of
the predicate mapped to the periodCollections terms,
which is simply rdfs:member. Structuring the dataset as an
object, in addition to providing efficient indexing, also sim-
plifies the JSON Patch [5] data structures used to describe
changes to the dataset. Since JSON objects are unordered
sets of key-value pairs, patches changing them can consist of
add, remove, or replace operations and needn’t use move
operations to keep elements in order.

6.3 Managing the canonical version

The canonical version of the PeriodO dataset is canonical
only because the principals involved in the PeriodO project
have made a commitment to maintain long-term HTTP ac-
cess to PeriodO dataset, and to review submitted patches
to the dataset for completeness and correctness. It is en-
tirely possible that there could eventually be multiple in-
dependent projects making such commitments, perhaps ori-
ented toward different scholarly sub-disciplines with needs
for identifiable period definitions. At the time of writing,
however, there is only a single such project, and the dataset
maintained by the project is the one we are deeming canon-
ical. Establishing a canonical version of the PeriodO dataset
requires a) a way to identify and document the current ver-
sion of the dataset and past changes to it, and b) a process
for accepting, reviewing, and applying or rejecting proposed
changes to the canonical dataset .

6.3.1 Persistent identifiers

To identify the canonical dataset and the concepts it de-
scribes, and to provide reliable long-term HTTP access to
the canonical dataset, we rely on the ARK identifier scheme



8 Ryan Shaw et al.

Fig. 1: A PeriodO period definition represented using JSON-LD.

[22] and the California Digital Library’s EZID service [33].
To manage the acceptance, review, and application or rejec-
tion of proposed changes, we have built a simple HTTP API.
This API can be used directly and programmatically, or via
a JavaScript client published alongside the PeriodO dataset.
The rest of this section describes PeriodO identifiers and the
PeriodO HTTP API in more detail.

In the JSON-LD serialization of the canonical PeriodO
dataset, period definitions and collections of period defini-
tions are identified by keys in the JSON-LD object, such as
p0fh3zc for a period collection or p0fh3zcqs6h for a pe-
riod definition within that collection. These short sequences
are guaranteed to uniquely identify records within a single
local copy of the PeriodO dataset. To uniquely refer to pe-
riod definitions or collections in the canonical dataset, the
short local key must be appended to the canonical dataset’s

globally unique prefix. The canonical PeriodO dataset uses
the globally unique prefix ark:/99152/. The ark: label
indicates that canonical PeriodO identifiers are Archival Re-
source Keys or ARKs [23].

PeriodO identifiers are opaque and hence not useful on
their own. For an opaque identifier to be used effective, there
must be a straightforward way to obtain a description of
the identified object [23]. The CDL provides the resolution
of identifiers to descriptions as a service, currently located
at http://n2t.net/. This URL locates a name mapping
authority hostport (NMAH). The NMAH used may change
over time; there can be multiple alternative name mapping
authorities. ark:/99152/p0 is registered as an identifier of
the PeriodO Period Gazetteer with the California Digital Li-
brary’s EZID service for the maintenance of long-term iden-
tifiers. EZID maintains a public index of registered identi-

http://n2t.net/


A Sharing-Oriented Design Strategy for Networked Knowledge Organization Systems 9

fiers, including descriptions of the things identified. The de-
scription of the PeriodO Period Gazetteer includes a URL
locating the HTTPS server that is responsible for both serv-
ing the PeriodO dataset and receiving patches. Hence EZID
responds to requests to (for example) http://n2t.net/

ark:/99152/p0fh3zcqs6hwith an HTTP 302 Found sta-
tus, and a Location header with the URL where this re-
source can currently (but not permanently) be found [12,
section 6.4.3]. Clients can then make a new request to this
temporary URL.

6.3.2 Proposing and reviewing modifications

In section 5 we described the sharing-oriented process for
working with PeriodO data: make a local copy that can be
modified at will, and exchange proposed modifications via
patches (see figure 2). Rather than exposing a granular API
or a SPARQL endpoint, we make the entire PeriodO dataset
available as an HTTP PATCHable resource [11]. A contribu-
tor proposes modifications by sending an HTTP PATCH re-
quest to a PeriodO server, including an Authorization

header with a valid and unexpired bearer token [21]. Cur-
rently the only way for a contributor to obtain a bearer token
is to create an ORCID [17] identifying herself and to grant
the PeriodO project permission to identify her using her OR-
CID. After granting this permission the server will respond
with a version of the PeriodO client application that has pos-
session of the bearer token. Requests made to the PeriodO
API with this bearer token are then assumed to have orig-
inated with the contributor who granted permission. Thus
if the bearer token is leaked, others will be able to submit
patches and falsely attribute them to her. The PeriodO API
uses HTTPS to avoid transmitting bearer tokens openly, but
given that there are various other ways a bearer token could
leak, this should not be considered a secure authentication
scheme. In the event of a bearer token leak, the token can be
revoked by either PeriodO administrators or the person on
whose behalf the token was originally created.

Assuming it has been properly authenticated, the body
of the PATCH request must be a valid JSON Patch docu-
ment [5]. Figure 3 shows a JSON Patch document describ-
ing a correction made to a single period definition. If the
request body is not a valid JSON Patch document, or if the
patch is valid but cannot be applied to the current version
of the dataset (perhaps due to intervening modifications),
the server will not process the request. Otherwise, the server
will respond with a 202 Accepted status code, indicating
that the patch has been accepted for processing but nothing
further has happened. The response will include a Location
header giving the URL for the accepted patch. The current
status of the patch is published at this URL. At some point
later, one of the PeriodO curators will examine the patch
and decide whether or not to apply it to the dataset. If the

curator decides to apply the patch, identifiers are minted for
any new period definitions or collections introduced by the
patch. The dataset is then copied and the patch is applied to
the new copy, which becomes the current dataset. All past
versions of the dataset, as well as all patches that have been
accepted (whether applied, rejected, or yet to be reviewed),
are readable through the HTTP API.

The PeriodO client is a JavaScript application intended
to run in a Web browser. The client provides an interface
for browsing the period definition collections and compar-
ing period definitions, and for modifying and adding new
period definitions and collections (see figure 4). It can also
be used offline as a tool for browsing and editing PeriodO
data from local files. This allows us to archive copies of the
PeriodO client alongside snapshots of the dataset, suitable
for deposit in a long-term scholarly repository. When a re-
quest is made to the PeriodO server for an HTML represen-
tation of the PeriodO data, the response includes the code
for the PeriodO client. When the client begins running in
the browser, it requests a copy of the PeriodO dataset from
the same server, and stores this copy locally. At this point
the client can be used entirely offline, unless one wishes to
propose modifications to the data. If a contributor wishes to
propose modifications to the canonical version of the Peri-
odO dataset, or any other version being hosted by a PeriodO
server, she must use the version of the PeriodO client pro-
vided by that specific server, so that she can be authenticated
and identified as the author of the patch.

7 Discussion

The design of PeriodO reflects our years of experience con-
suming and publishing data on the Web. First, it is important
not to introduce unnecessary external dependencies. Using
someone else’s data always introduces a dependency on the
data provider. But if one has a local copy of the data, one is
dependent on the provider only for the initial dataset and pe-
riodic updates, rather than for every query over the data. Us-
ing the data becomes more like using a software library than
a real-time service relationship. And in the event the data
providers abandon their stewardship of the data, the users
still have the data itself to do with as they wish. So unless
the dataset is so large and complex that it requires special re-
sources, such as a cluster of servers for processing queries,
it is preferable to download a local copy of the data than to
access it via a Web service.

Second, it is difficult to commit to reliably maintaining
even a simple information service for the long term. Secu-
rity patches must be kept up to date. Bugs must be fixed.
Domain names and SSL certificates must be renewed. If the
information service is computationally intensive, as RDA-
style services such as SPARQL endpoints can be, resources
must be carefully managed. Queries that would consume too

http://n2t.net/ark:/99152/p0fh3zcqs6h
http://n2t.net/ark:/99152/p0fh3zcqs6h


10 Ryan Shaw et al.

Fig. 2: The sharing-oriented process for working with PeriodO data.

Fig. 3: A JSON Patch document describing a correction made to a single period definition.

much memory or CPU must be prevented. And these are
simply the more technical challenges of keeping an infor-
mation service available. More formidable are the organiza-
tional challenges: who has SSH access to the server? Who
is responsible for making decisions about access and ver-
sioning? While designing PeriodO we sought to reduce the
commitment of maintaining PeriodO to the bare minimum.
Use of PeriodO data and the tools for browsing, visualiz-
ing, and editing PeriodO data does not require any PeriodO
server to be running.

The PeriodO architecture is a radical response to what
Ren and Lyytinen [28, 79] identify as the “fundamental chal-
lenge” of deploying information services: “to determine an
economic level of granularity for reuse: how fine or coarse
should a service be”. Binding and Tudhope [3] acknowl-

edge this challenge, noting that if a thesaurus service has too
fine-grained of an access protocol—for example, one speci-
fying procedures for getting data about individual concepts
and terms—using it will be unacceptable slow, as most in-
terfaces will need to make multiple calls to gather the data
needed to generate browsing interfaces. They recommended
that thesaurus services provide coarse-grained “composite”
procedures allowing necessary data to be obtained with a
single request. The coarsest possible response to a query
over a dataset is the entire dataset itself. In 2004, expect-
ing clients to cache a local copy of an entire KOS for lo-
cal querying may have been unrealistic. Now it is feasible
to store datasets with hundreds of thousands of records in
browser storage, and query them quickly using JavaScript
[31]. Projects like DBpedia take advantage of this fact to



A Sharing-Oriented Design Strategy for Networked Knowledge Organization Systems 11

Fig. 4: Editing a period definition in the PeriodO client.

increase the availability of its data: its “triple fragment pat-
terns” interface uses an approach similar to PeriodO, push-
ing the querying process from the server to the client [37].

By eschewing a service-oriented architecture, the design
of PeriodO also avoided some of the pitfalls of a service-
oriented design process. In a service-oriented design pro-
cess, businesses practices are analyzed in an attempt to iden-
tify common repeated activities. These activities can then be
logically represented as services, and the practices to be sup-
ported can be re-conceptualized as compositions of those
services. The goal is to abstractly represent commonly re-
peated activities so that they can be outsourced, and their
provision eventually commodified. But scholarly practices,
especially in the humanities, resist this kind of abstraction
and decontextualization, as the organizers of Project Bam-
boo discovered. The Bamboo planning process was nearly
derailed when participating scholars objected to the assump-
tion that scholarship can be reduced to an abstract recipe
[9]. The problem is not that scholars are unable to analyze
their own practices, but that those practices are not easily de-
tached from the contexts of individual researchers and their
fields of study. Note-taking, for example, is an activity ob-

served across a wide range of scholarly practices, but the re-
lationship of note-taking to other scholarly activities varies
from scholar to scholar. Note-taking is a repeated activity,
but it does not have a specified outcome and it is not easily
described in the abstract.

Rather than attempt to abstractly describe scholarly ac-
tivities in order to impose a division of labor, PeriodO fo-
cuses on representing scholarly assertions. Representing as-
sertions has its own challenges, but they are familiar ones,
as this is exactly what the designers of KOS have been doing
for centuries. A gazetteer, for example, is a curated collec-
tion of scholarly assertions about places. Scholars can reach
consensus on what pieces of information are needed in a
gazetteer entry more easily than they can articulate the pos-
sible ways they might incorporate that gazetteer into their
scholarly practice. The PeriodO architecture was designed
to facilitate the public documentation and peer-to-peer shar-
ing of such scholarly assertions. It is a sharing-oriented ar-
chitecture in which participants collaborate by exchanging
representations of assertions using a shared data format. The
design of PeriodO deliberately discourages the establish-
ment of an ongoing service relationship between the Peri-



12 Ryan Shaw et al.

odO project and its users. Instead of being a service provider
with the commitments that entails, the PeriodO project is
just another peer with which period assertions can be shared.
It is distinguished from other peers by the fact that it has
committed to a trustworthy curation process, and nothing
restricts other peers from making similar commitments.

8 Conclusion

When knowledge organization involves the exchange of as-
sertions among peers, a sharing-oriented architecture makes
more sense than a service-oriented one. Scholarly commu-
nication involves various forms of knowledge organization.
Some of these forms of knowledge organization involve a di-
vision of labor, such as the division of labor between schol-
ars who write books and the librarians who make them avail-
able in libraries. But when scholars share less formally pub-
lished products such as datasets, software, or working notes,
there is no clear division of labor. These kinds of scholarly
products are vehicles of peer-to-peer communication among
scholars. Differences in the concepts and terminology they
employ cannot be standardized away, as it is these very dif-
ferences that are often at stake in such forms of scholarly
communication. Scholars need better ways to exchange in-
formation about the different concepts they develop and the
different terminology they employ. Sharing-oriented NKOS
like PeriodO can help provide them.

PeriodO provides tools for authoring, organizing, and
sharing scholarly assertions about period concepts. If these
tools are adopted widely, scholarly products will begin to
refer to these assertions using PeriodO identifiers. Once we
can begin harvesting PeriodO identifiers from scholarly out-
puts “in the wild,” a new phase in the development of Peri-
odO will be possible. Alongside the period gazetteer docu-
menting definitions of historical period names, we can build
a period-focused index of scholarly work. Where the period
gazetteer allows scholars to point to specific period defini-
tions, the period-focused index would point in the opposite
direction: from specific definitions of period names to spe-
cific resources that use those definitions. Given a sufficiently
large number of resources citing PeriodO definitions, it may
even be possible to train statistical classifiers to suggest suit-
able period names for annotating unlabeled resources, or to
disambiguate period names in texts by linking them to Pe-
riodO definitions. First, however, we must make it as easy
and attractive as possible for data curators and scholars to
adopt PeriodO. We expect that PeriodO’s sharing-oriented
architecture will play an important role in facilitating this.

Acknowledgements We are grateful to the National Endowment for
the Humanities for funding this work, to our partners who contributed
period definitions and provided feedback, and to Sarah Buchanan for
her work compiling the initial PeriodO dataset.

References

1. Allen JF, Ferguson G (1994) Actions and Events
in Interval Temporal Logic. Journal of Logic and
Computation 4(5):531–579, DOI 10.1093/logcom/4.5.
531, URL http://logcom.oxfordjournals.org/

cgi/doi/10.1093/logcom/4.5.531

2. Austin D, Barbir A, Ferris C, Garg S (2004) Web
Services Architecture Requirements. Tech. rep., W3C,
URL http://www.w3.org/TR/wsa-reqs/

3. Binding C, Tudhope D (2004) KOS at your Service:
Programmatic Access to Knowledge Organisation Sys-
tems. Journal of Digital Information 4(4)

4. Bruza PD (1990) Hyperindices: A Novel Aid for
Searching in Hypermedia. In: Proceedings of the First
European Conference on Hypertext, Cambridge Univer-
sity Press, Versailles, France, pp 109–122

5. Bryan P, Nottingham M (2013) RFC6902: JavaScript
Object Notation (JSON) Patch. Tech. rep., IETF, URL
https://tools.ietf.org/html/rfc6902

6. Chacon S, Straub B (2014) Pro Git, 2nd edn. Apress,
URL http://git-scm.com/book/en/v2

7. Collier GH (1987) Thoth-II. In: Proceeding of the ACM
conference on Hypertext - HYPERTEXT ’87, ACM
Press, New York, New York, USA, pp 269–289, DOI
10.1145/317426.317446, URL http://dx.doi.org/

10.1145/317426.317446

8. Davies R (1998) Working Session 2: Functional Model.
URL http://nkos.slis.kent.edu/SESS2.html

9. Dombrowski Q (2014) What Ever Happened to
Project Bamboo? Literary and Linguistic Comput-
ing 29(3):326–339, DOI 10.1093/llc/fqu026, URL
http://llc.oxfordjournals.org/cgi/doi/10.

1093/llc/fqu026

10. Draheim D (2010) The Service-Oriented Metaphor De-
ciphered. Journal of Computing Science and Engineer-
ing 4(4):253–275, DOI 10.5626/JCSE.2010.4.4.253,
URL dx.doi.org/10.5626/JCSE.2010.4.4.253

11. Dusseault L, Snell J (2010) RFC5789: PATCH Method
for HTTP. Tech. rep., IETF, URL http://tools.

ietf.org/html/rfc5789

12. Fielding R, Reschke J (2014) RFC7231: Hypertext
Transfer Protocol (HTTP/1.1): Semantics and Content.
Tech. rep., IETF

13. Fielding RT (2000) Architectural Styles and the
Design of Network-based Software Architectures.
PhD thesis, University of California, Irvine, URL
https://www.ics.uci.edu/~fielding/pubs/

dissertation/top.htm

14. Foster I (2005) Service-oriented science. Sci-
ence (New York, NY) 308(5723):814–7, DOI
10.1126/science.1110411, URL http://dx.doi.

org/10.1126/science.1110411

http://logcom.oxfordjournals.org/cgi/doi/10.1093/logcom/4.5.531
http://logcom.oxfordjournals.org/cgi/doi/10.1093/logcom/4.5.531
http://www.w3.org/TR/wsa-reqs/
https://tools.ietf.org/html/rfc6902
http://git-scm.com/book/en/v2
http://dx.doi.org/10.1145/317426.317446
http://dx.doi.org/10.1145/317426.317446
http://nkos.slis.kent.edu/SESS2.html
http://llc.oxfordjournals.org/cgi/doi/10.1093/llc/fqu026
http://llc.oxfordjournals.org/cgi/doi/10.1093/llc/fqu026
dx.doi.org/10.5626/JCSE.2010.4.4.253
http://tools.ietf.org/html/rfc5789
http://tools.ietf.org/html/rfc5789
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://dx.doi.org/10.1126/science.1110411
http://dx.doi.org/10.1126/science.1110411


A Sharing-Oriented Design Strategy for Networked Knowledge Organization Systems 13

15. Fouilland F, Frasca M, Pelagatti P (1995) Monte Casa-
sia (Ragusa). Campagne di scavo 1966, 197273 nella
necropoli indigena. Notizie degli scavi di antichità 5-
6:323–583, URL http://www.worldcat.org/oclc/

758533779

16. Garshol LM (2004) Metadata? Thesauri? Taxonomies?
Topic Maps! Making Sense of it all. Journal of
Information Science 30(4):378–391, DOI 10.1177/
0165551504045856, URL http://dx.doi.org/10.

1177/0165551504045856

17. Haak LL, Fenner M, Paglione L, Pentz E, Ratner
H (2012) ORCID: a system to uniquely identify re-
searchers. Learned Publishing 25(4):259–264, DOI
10.1087/20120404, URL http://dx.doi.org/10.

1087/20120404

18. Hill L, Koch T (2001) Networked Knowledge
Organization Systems: introduction to a special
issue. Journal of Digital Information 1(8), URL
https://journals.tdl.org/jodi/index.php/

jodi/article/view/32/33

19. Hjø rland B (2007) Semantics and Knowledge
Organization. Annual Review of Information Sci-
ence and Technology 41:367–405, DOI 10.1002/aris.
2007.1440410115, URL http://doi.wiley.com/

10.1002/aris.2007.1440410115

20. Hobbs JR, Pan F (2006) Time Ontology in OWL. report,
W3C, URL http://www.w3.org/TR/owl-time/

21. Jones M, Hardt D (2012) RFC6750: The OAuth 2.0
Authorization Framework: Bearer Token Usage. Tech.
rep., IETF, URL https://tools.ietf.org/html/

rfc6750

22. Kunze J, Rodgers R (2013) The ARK Identifier
Scheme. Tech. rep., Internet Engineering Task
Force, URL https://tools.ietf.org/html/

draft-kunze-ark-18

23. Kunze JA (2003) Towards Electronic Persistence Us-
ing ARK Identifiers. In: IWAW/ECDL Annual Work-
shop Proceedings 3rd, URL http://bibnum.bnf.fr/

ecdl/2003/proceedings.php?f=kunze

24. Lorrio AJ, Zapatero GR (2005) The Celts in
Iberia: An Overview. e-Keltoi 6:167–254, URL
http://www.uwm.edu/celtic/ekeltoi/volumes/

vol6/6_4/lorrio_zapatero_6_4.html

25. Miles A, Bechhofer S (2009) SKOS Simple Knowledge
Organization System Reference. Tech. rep., W3C, URL
http://www.w3.org/TR/skos-reference/

26. Page KR, De Roure DC, Martinez K (2011) REST and
Linked Data. In: Proceedings of the Second Interna-
tional Workshop on RESTful Design - WS-REST ’11,
ACM Press, New York, New York, USA, p 22, DOI 10.
1145/1967428.1967435, URL http://dl.acm.org/

citation.cfm?id=1967428.1967435

27. Rabinowitz A (2012) GeoDia: or, Navigating Ar-
chaeological Time and Space in an American Col-
lege Classroom. In: CAA2012 Proceedings of the
40th Conference in Computer Applications and Quan-
titative Methods in Archaeology, Southampton, UK,
pp 259–268, URL http://dare.uva.nl/document/

516092#page=260

28. Ren M, Lyytinen KJ (2008) Building Enterprise Ar-
chitecture Agility and Sustenance with SOA. Commu-
nications of the Association for Information Systems
22, URL http://aisel.aisnet.org/cais/vol22/

iss1/4/

29. Schulte WR (1996) ”Service Oriented” Ar-
chitectures, Part 2. Tech. rep., Gartner, URL
https://www.gartner.com/doc/302869/

service-oriented-architectures-

30. Schulte WR, Natis YV (1996) ”Service Ori-
ented” Architectures, Part 1. Tech. rep., Gartner,
URL https://www.gartner.com/doc/302868/

service-oriented-architectures-

31. Shaw R, Golden P (2013) Taking entity reconciliation
offline. Proceedings of the American Society for In-
formation Science and Technology 50(1):1–4, DOI 10.
1002/meet.14505001107, URL http://doi.wiley.

com/10.1002/meet.14505001107

32. Sporny M, Longley D, Kellogg G, Lanthaler M, Lind-
ström N (2014) JSON-LD 1.0: A JSON-based Serial-
ization for Linked Data. Tech. rep., W3C, URL http:

//www.w3.org/TR/json-ld/

33. Starr J, Willett P, Federer L, Horning C, Bergstrom
M (2012) A Collaborative Framework for Data Man-
agement Services: The Experience of the University
of California. Journal of eScience Librarianship
1(2):109–114, DOI 10.7191/jeslib.2012.1014, URL
http://escholarship.umassmed.edu/jeslib/

vol1/iss2/7

34. Stokstad M, Cothren MW (2013) Art history, 5th edn.
Pearson, Boston

35. The Open Group (2013) Service Oriented Architecture:
What Is SOA? URL http://www.opengroup.org/

soa/source-book/soa/soa.htm

36. Tudhope D, Koch T (2004) New Applications
of Knowledge Organization Systems: introduction
to a special issue. Journal of Digital Informa-
tion 4(4), URL https://journals.tdl.org/jodi/

index.php/jodi/issue/view/20

37. Verborgh R (2014) DBpedia now available as triple
pattern fragments. URL http://lists.w3.org/

Archives/Public/public-lod/2014Oct/0293.

html

38. Zeng ML (2014) NKOS (Networked Knowledge Orga-
nization Systems). URL http://nkos.slis.kent.

edu/

http://www.worldcat.org/oclc/758533779
http://www.worldcat.org/oclc/758533779
http://dx.doi.org/10.1177/0165551504045856
http://dx.doi.org/10.1177/0165551504045856
http://dx.doi.org/10.1087/20120404
http://dx.doi.org/10.1087/20120404
https://journals.tdl.org/jodi/index.php/jodi/article/view/32/33
https://journals.tdl.org/jodi/index.php/jodi/article/view/32/33
http://doi.wiley.com/10.1002/aris.2007.1440410115
http://doi.wiley.com/10.1002/aris.2007.1440410115
http://www.w3.org/TR/owl-time/
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/draft-kunze-ark-18
https://tools.ietf.org/html/draft-kunze-ark-18
http://bibnum.bnf.fr/ecdl/2003/proceedings.php?f=kunze
http://bibnum.bnf.fr/ecdl/2003/proceedings.php?f=kunze
http://www.uwm.edu/celtic/ekeltoi/volumes/vol6/6_4/lorrio_zapatero_6_4.html
http://www.uwm.edu/celtic/ekeltoi/volumes/vol6/6_4/lorrio_zapatero_6_4.html
http://www.w3.org/TR/skos-reference/
http://dl.acm.org/citation.cfm?id=1967428.1967435
http://dl.acm.org/citation.cfm?id=1967428.1967435
http://dare.uva.nl/document/516092#page=260
http://dare.uva.nl/document/516092#page=260
http://aisel.aisnet.org/cais/vol22/iss1/4/
http://aisel.aisnet.org/cais/vol22/iss1/4/
https://www.gartner.com/doc/302869/service-oriented-architectures-
https://www.gartner.com/doc/302869/service-oriented-architectures-
https://www.gartner.com/doc/302868/service-oriented-architectures-
https://www.gartner.com/doc/302868/service-oriented-architectures-
http://doi.wiley.com/10.1002/meet.14505001107
http://doi.wiley.com/10.1002/meet.14505001107
http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/json-ld/
http://escholarship.umassmed.edu/jeslib/vol1/iss2/7
http://escholarship.umassmed.edu/jeslib/vol1/iss2/7
http://www.opengroup.org/soa/source-book/soa/soa.htm
http://www.opengroup.org/soa/source-book/soa/soa.htm
https://journals.tdl.org/jodi/index.php/jodi/issue/view/20
https://journals.tdl.org/jodi/index.php/jodi/issue/view/20
http://lists.w3.org/Archives/Public/public-lod/2014Oct/0293.html
http://lists.w3.org/Archives/Public/public-lod/2014Oct/0293.html
http://lists.w3.org/Archives/Public/public-lod/2014Oct/0293.html
http://nkos.slis.kent.edu/
http://nkos.slis.kent.edu/

	Introduction
	Networked knowledge organization systems
	Service-oriented architecture
	Service-oriented design strategy
	Sharing-oriented design strategy and architecture
	The PeriodO period gazetteer
	Discussion
	Conclusion

